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Abstract. Efficient execution of parallel scientific applications requires
high-performance storage systems designed to meet their I/O require-
ments. Most high-performance I/O intensive applications access multiple
layers of the storage stack during their disk operations. A typical I/O re-
quest from these applications may include accesses to high-level libraries
such as MPI I/O, executing on clustered parallel file systems like PVFS2,
which are in turn supported by native file systems like Linux. In order to
design and implement parallel applications that exercise this I/O stack,
it is important to understand the flow of I/O calls through the entire
storage system. Such understanding helps in identifying the potential
performance and power bottlenecks in different layers of the storage hi-
erarchy. To trace the execution of the I/O calls and to understand the
complex interactions of multiple user-libraries and file systems, we pro-
pose an automatic code instrumentation technique, which enables us to
collect detailed statistics of the I/O stack. Our proposed I/O tracing tool
traces the flow of I/O calls across different layers of an I/O stack, and
can be configured to work with different file systems and user-libraries.
It also analyzes the collected information to generate output in terms of
different user-specified metrics of interest.

Key words: Automated code instrumentation, Parallel I/O, MPI-IO,
MPICH2, PVFS2.

1 Introduction

Emerging data-intensive applications make significant demands on storage sys-
tem performance and, therefore, face what can be termed as I/O Wall, that
is, I/O behavior is the primary factor that determines application performance.
Clearly, unless the I/O wall is properly addressed, scientists and engineers will
not be able to exploit the full potential of emerging parallel machines when
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Fig. 1. Our automated I/O tracing tool takes as input the application program, I/O
stack information and a configuration file which captures the metrics of interest, lo-
cations of target sources, and a description of the region of interest in the code. It
automatically generates and runs instrumented code, and finally collects and analyzes
all the statistics on the fly.

running large-scale parallel applications from bioinformatics, climate prediction,
computational chemistry, and brain imaging domains.

The first step in addressing the I/O wall is to understand it. Unfortunately,
this is not trivial as I/O behavior today is a result of complex interactions
that take place among multiple software components, which can be referred to,
collectively, as I/O Stack. For example, an I/O stack may contain an application
program, a high-level library such as MPI-IO [8], a parallel file system such as
PVFS [3], and a native file system such as Linux. A high-level I/O call in an
application program flows through these layers in the I/O stack and, during this
flow, it can be fragmented into multiple smaller calls (sub-calls) and the sub-
calls originating from different high-level calls can contend for the same set of
I/O resources such as storage caches, I/O network bandwidth, disk space, etc.
Therefore, understanding the I/O wall means understanding the flow of I/O calls
over the I/O stack.

To understand the behavior of an I/O stack, one option is to let the applica-
tion programmer/user to instrument the I/O stack manually. Unfortunately, this
approach (manual instrumentation) is very difficult in practice and extremely
error prone. In fact, tracking even a single I/O call may necessitate modifications
to numerous files and passing information between them.

Motivated by this observation, in this work, we explore automated instru-
mentation of the I/O stack. In this approach, as shown in Figure 1, instead of
instrumenting the source code of applications and other components of the I/O
stack manually, an application programmer specifies what portion of the appli-
cation code is to be instrumented and what statistics are to be collected. The
proposed tool takes this information as input along with the description of the
target I/O stack and the source codes of the application program and other I/O
stack software, and generates, as output, an instrumented version of the appli-
cation code as well as instrumented versions of the other components (software
layers) in the I/O stack. All necessary instrumentation of the components in the
I/O stack (application, libraries, file systems) are carried out automatically.
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A unique aspect of our approach is that it can work with different I/O stacks
and with different metrics of interest (e.g., I/O latency, I/O throughput, I/O
power). Our experience with this tool is very encouraging so far. Specifically,
using this tool, we automatically instrumented an I/O-intensive application and
collected detailed performance and power statistics on the I/O stack.

Section 2 discusses the related work on code instrumentation and profiling.
Section 3 explains the details of our proposed automated I/O tracing tool. An
experimental evaluation of the tool is presented in Section 4. Finally, Section 5
concludes the paper with a summary of the planned future work.

2 Related Work

Over the past decade many code instrumentation tools that target different
machines and applications have been developed and tested. ATOM [24] inserts
probe code into the program at compile time. Dynamic code instrumentation [1,
2, 17], on the other hand, intercepts the execution of an executable at runtime to
insert user-defined codes at different points of interest. HP’s Dynamo [1] moni-
tors an executable’s behavior through interpretation and dynamically selects hot
instruction traces from the running program.

Several techniques have been proposed in the literature to reduce instru-
mentation overheads. Dyninst and Paradyn use fast breakpoints to reduce the
overheads incurred during instrumentation. They both are designed for dynamic
instrumentation [12]. In comparison, FIT [5] is a static system that aims re-
targetability rather than instrumentation optimization. INS-OP [15] is also a dy-
namic instrumentation tool that applies transformations to reduce the overheads
in the instrumentation code. In [27], Vijayakumar et al. propose an I/O tracing
approach that combines aggressive trace compression. However, their strategy
does not provide flexibility in terms of target metric specification. Tools such
as CHARISMA [20], Pablo [23], and TAU (Tuning and Analysis Utilities) [19]
are designed to collect and analyze file system traces [18]. For the MPI-based
parallel applications, several tools, such as MPE (MPI Parallel Environment) [4]
and mpiP [26], exist. mpiP is a lightweight profiling tool for identifying com-
munication operations that do not scale well in the MPI-based applications. It
reduces the amount of profile data and overheads by collecting only statisti-
cal information on MPI functions. Typically, the trace data generated by these
profiling tools are visualized using tools such as Jumpshot [28], Nupshot [14],
Upshot [11], and PerfExplorer [13].

Our work is different from these prior efforts as we use source code analysis
to instrument the I/O stack automatically. Also, unlike some of the existing
profiling and instrumentation tools, our approach is not specific to MPI or to a
pre-determined metric; instead, it can target an entire I/O stack and work with
different performance and power related metrics.
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3 Our Approach

3.1 High-Level View of Automated Instrumentation

Our goal is to provide an automated I/O tracing functionality for parallel appli-
cations that exercise multiple layers of an I/O stack, with minimal impact to the
performance. To this end, we have implemented in this work an automated I/O
tracing tool that, as illustrated in Figure 1, comprises three major components:
code instrumenter, execution engine, and data processing engine.

As shown in Figure 1, the code instrumenter consists of the parser, the probe
selector, and the probe inserter. In this context, a probe is a piece of code being
inserted into the application code and I/O stack software (e.g., in the source
codes of MPI-I/O and PVFS2), which helps us collect the required statistics.
The code instrumenter takes as input the application program, high level I/O
metrics of interest written in our specification language, and the target I/O stack
(which consists of the MPI library and PVFS2 in our current testbed).

The parser parses I/O metrics of interest from the configuration file, extracts
all necessary information to instrument the I/O stack in a hierarchial fashion
from top to bottom, and stores it to be used later by other components of the
tool. After that, the probe selector chooses the most appropriate probes for the
high-level metrics specified by the user. Finally, the probe inserter automatically
inserts the necessary probes into the proper places in the I/O stack. Note that,
depending on the target I/O metrics of interest, our tool may insert multiple
probes in the code. Table 1 lists a representative set of high-level metrics that
can be traced using our tool.

Table 1. Sample high-level metrics that can be traced and collected using the tool.
I/O latency experienced by each I/O call in each layer (client, server, or disk) in the stack
Throughput achieved by a given I/O read and write call
Average I/O access latency in a given segment of the program
Number of I/O nodes participating in each collective I/O
Amount of time spent during inter-processor communication in executing a collective I/O call
Disk power consumption incurred by each I/O call
Number of disk accesses made by each I/O call

The execution engine compiles and runs the instrumented I/O stack, and
generates the required trace. Finally, the data processing engine analyzes the
trace log files and returns statistics based on the user’s queries. The collected
statistics can be viewed from different perspectives. For example, the user can
look at the I/O latency/power breakdown at each server or at each client. The
amount of time spent by an I/O call at each layer of the target I/O stack can
also be visualized.

3.2 Technical Details of Automated Instrumentation

In this section, we discuss details of the code instrumenter component of our
tool. Let us assume, for the purpose of illustration, that the user is interested
in collecting statistics about the execution latency of each I/O call in each layer
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-A [application.c, application]
-L [$MPICH2, $PVFS2, ClientMachineInfo, $Log]
-O [w]
-C [100-300]
-S [4, <3 max>, <3 max>, <3 max>, <3 max>, <3 max>]
-T [4, <3, mpi.0.log , mpi.1.log, mpi.2.log>, <3, client.0.log, client.1.log, client.2.log>,

<3, server.0.log, server.1.log,server.2.log>, <3, disk.0.log, disk.1.log,disk.2.log>]
-Q [latency, inclusive, all, list:, list:*, list:*, list:*]
-P [App;common;App-probe1;-l main;before]
-P [App;common;App-probe2;-l MPI_Comm_rank;after]
-P [App;common;App-Start-probe;-l MPI_File_read;before]
-P [App;common;App-Start-probe4;-l MPI_File_write;before]
-P [MPI;latency;MPI-Start-probe;-n 74;$MPICH2/mpi/romio/mpi-io/read.c]
-P [MPI;latency;MPI-End-probe;-n 165;$MPICH2/mpi/romio/mpi-io/read.c]
-P [MPI;latency;MPI-Start-probe;-n 76;$MPICH2/mpi/romio/mpi-io/read_all.c]
-P [MPI;latency;MPI-End-probe;-n 118;$MPICH2/mpi/romio/mpi-io/read_all.c]
-P [MPI;latency;MPI-End-probe;-n 73;$MPICH2/mpi/romio/mpi-io/write.c]
-P [MPI;latency;MPI-End-probe;-n 168;$MPICH2/mpi/romio/mpi-io/write.c]
-P [MPI;latency;MPI-Start-probe;-n 75;$MPICH2/mpi/romio/mpi-io/write_all.c]
-P [MPI;latency;MPI-End-probe;-n 117;$MPICH2/mpi/romio/mpi-io/write_all.c]
-P [MPI;latency;MPI-probe;-n 62;$MPICH2/mpi/romio/mpi-io/adio/ad_pvfs2_read.c]
-P [MPI;latency;MPI-probe;-n 295;$MPICH2/mpi/romio/mpi-io/adio/ad_pvfs2_write.c]
-P [PVFSClient;latency;Client-Start-probe;-n 372;$PVFS2/client/sysint/sys-io.sm]
-P [PVFSClient;latency;Client-End-probe;-n 397;$PVFS2/client/sysint/sys-io.sm]
-P [PVFSClient;latency;Client-probe;-n 670;$PVFS2/client/sysint/sys-io.sm]
-P [PVFSServer;latency;.Server-Start-probe;-n 153;$PVFS2/server/io.sm]
-P [PVFSServer;latency;.Server-End-probe;-n 5448;$PVFS2/io/job/job.c]
-P [PVFSServer;latency;.Disk-start-probe;-n 1342;$PVFS2/io/flow/flowproto-bmi-trove/flowproto

-multiqueue.c]
-P [PVFSServer;latency;.Disk-end-probe1;-n 1513;$PVFS2/io/flow/flowproto-bmi-trove/flowproto-

multiqueue.c]
-P [PVFSServer;latency;.Disk-end-probe2;-n 1513;$PVFS2/io/flow/flowproto-bmi-trove/flowproto-

multiqueue.c]

Fig. 2. An example configuration file.

of the I/O stack, that is, the amount of time spent by an I/O call in MPI-I/O,
PVFS2 client, PVFS2 server, and disk layers. A sample configuration file that
captures this request is given in Figure 2. This file is written in our specification
language, and Table 2 describes the details of each parameter in the configuration
file. Let us now explain the contents of this sample configuration file.

Table 2. Flags used in a configuration file.
Parameter Description

-A Application file name or path
-L Path for I/O libraries
-O Operation of interest
-C Code segment of interest to trace
-S I/O stack specification
-T Tracing file location generated by our tool
-Q Metric of interest
-P Probe name and inserting location

In this example, the user
wants to collect the execu-
tion latency of MPI-IO write
operations (indicated using
-O[w]) that occur between
lines 100 to 300 of an applica-
tion program called, applica-
tion.c. Also, the user specifies
three I/O stack layers, which
are MPI-IO, PVFS2 client,

and PVFS2 server (below the application program). Finally, the user describes
the trace log file names and their locations for the data processing engine. Based
on the target metric of interest, that is latency, the most appropriate latency
probes can be automatically inserted into the designated places in the probe
specification.

Figure 3 illustrates how the code instrumenter works. It takes as an input
the user configuration file along with MPI-IO and PVFS2. The parser parses
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Fig. 3. Illustration of inserting probes into the application program and I/O stack
components by our code instrumenter. Application′, MPICH2′, PVFS2 Client′,
and PVFS2 Server′ represent the instrumented I/O stack.

this configuration file and extracts all the information required by the other
components such as the probe inserter and the data processing engine. Based on
the specified target metric, i.e., the execution latency of MPI write operations
in all the layers including MPI-IO, PVFS2 client, PVFS2 server, and disk, the
probe selector employs only the write-related latency probes, which helps to
minimize the overheads associated with the instrumentation. Then, following
the call sequence of MPI write function, from the MPI-IO library though the
PVFS2 client to the PVFS2 server in Figure 3, the probe inserter selectively
inserts the necessary probes into the start point and the end point of each layer
described in the configuration file.

After the instrumentation, the probe inserter compiles the instrumented code.
During the compilation, it also patches a small array structure, called IOCal-
lID, to the MPI-IO and PVFS2 functions to be matched for tracing. IOCallIDs
contain information about each layer such as the layer ID and the I/O type.
When IOCallIDs are passed from the MPI-IO layer to the PVFS2 client layer,
the inserted probe extracts the information from them and generates the log files
with the latency statistics at the boundary of each layer.

Note that a high-level MPI-IO call can be fragmented into multiple small
sub-calls. For example, in two-phase I/O [6], which consists of an I/O phase and
a communication phase, tracing an I/O call across the layer boundaries in the
I/O stack is not trivial. In our implementation, each call has a unique ID in the
current layer and passes it to the layer below. This help us to connect the high-
level call to its sub-calls in a hierarchical fashion. It also helps the data processing
engine (see Figure 1) to combine the statistics coming from different layers in a
systematic way (for example, all the variables that hold latency information at
different layers are associated with each other using these IDs).
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Fig. 4. Computation of I/O latency and I/O throughput metrics.

In the PVFS2 server layer, our tool uses a unique structure, called flow desciptor,
to perform the requested I/O operations from the PVFS2 client. The probe in-
serted into the start point in the server layer extracts the information in the
IOCallIDs passed from the PVFS2 client and packs it into the flow descriptor.
Since the flow descriptor is passed to the entire PVFS2 server, the probe in the
server extracts the necessary information from it to collect the latency related
statistics without much complexity.

The execution engine runs the instrumented code and generates the trace
log files in each layer. Finally, the data processing engine analyzes all the trace
log files and collects the execution I/O latency induced by each MPI operation
in each layer. The I/O latency value computed at each layer is equal to the
maximum value of the I/O latencies obtained from different layers below it.
However, the computation of I/O throughput value is additive, i.e., the I/O
throughput computed at any layer is the sum of I/O throughputs from different
sub-layers below it. Figure 4 illustrates the computation of these metrics. To
compute the I/O power, we use the power model described in [9].

4 Evaluation

Table 3. Important disk parameters for
power calculation.

Parameter Default Value
Disk drive module IBM36Z15

Storage capacity (GB) 36.7
Maximum disk speed (RPM) 15000

Active power consumption (Watt) 13.5
Idle power consumption (Watt) 10.2

To demonstrate the operation of
our tracing tool, we ran a bench-
mark program using three PVFS2
servers and three PVFS2 clients on a
Linux cluster that consists of 6 dual-
core processor nodes, AMD Athlon
MP2000+, connected through Ether-
net and Myrinet. Each node of this
system runs a copy of PVFS2 and

MPICH2. To measure disk power consumption per I/O call, we used the disk
energy model [9] based on the data sheets of the IBM Ultrastar 36Z15 disk [25].
Table 3 gives the important metrics used to calculate power consumption.

In our evaluation, we used the FLASH I/O benchmark [7] that simulates the
I/O pattern of FLASH [29]. It creates the primary data structures in the FLASH
code and generates three files: a checkpoint file, a plot file for center data, and
a plot file for corner data, using two high-level I/O libraries: PnetCDF [16] and
HDF5 [10]. The in-memory data structures are 3D sub-blocks of size 8x8x8 or
16x16x16. In the simulation, 80 of these blocks are held by each processor and
are written to three files with 50 MPI File write all function calls. We used the
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sub-blocks of size 8x8x8. nxb, nyb, and nyz in Figures 5 through 9 represent
these sub-block sizes.

First, Figure 5 shows the I/O latencies experienced by each MPI-IO call from
Client 0’s perspective when PnetCDF is used. MPI-IO calls 6-17 are shown with
latencies (in milliseconds) taken in mpi-log, Client 0, Server 0, Server 1, and
Server 2, from left to right. We see that MPI-IO call 16 takes 193.3 milliseconds
in mpi-log, but only 32 milliseconds in Server 1. In this experiment, some of
the MPI-IO calls (0-5, 18-45) calls are directed to the metadata server to write
header information of each file. These calls were not recorded in the I/O server
log file. Figure 6, on the other hand, plots the latencies observed from Server 0’s
perspective. The three bars for every call ID represent cumulative latencies from
each client (Client 0, Client 1 and Client 2 from left to right). Further, each bar
also gives a breakdown of I/O latency (in milliseconds) taken for the request to
be processed in the MPI-IO, PVFS client, and PVFS server layers, respectively.
From this result, one can see, for example, that Client 1 and Client 2 spend less
time than Client 0 in the Server 0 as far as call ID 16 is concerned. These two
plots in Figure 5 and Figure 6 clearly demonstrate that our tool can be used to
study the I/O latency breakdown, from both clients’ and server’s perspectives.
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Figure 7 illustrates the I/O throughput in Server 0. One can observe from
this plot the detailed I/O throughput patterns of different clients regarding this
server. Comparing Figure 6 with Figure 7, one can also see that the bottleneck
I/O call in the application code depends on whether I/O latency or I/O through-
put is targeted. Figure 8, on the other hand, presents the power consumption
results for Server 0. We see that most of the power is consumed by I/O call 15,
and except for this call, power consumptions of Client 0 and Client 1 are similar
on this server.
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Our final set of results are given in
Figure 9 and depict the I/O latency
values observed from Client 0’s view-
point when using HDF5, instead of
PnetCDF. Overall, these sample set
of results clearly show that our tool
can be used to collect and analyze de-
tailed latency, throughput, and power
statistics regarding the I/O stack.

5 Concluding Remarks
and Future Work

Performing code instrumentation man-
ually is often difficult and could be
error-prone. Hence, we propose an
automatic instrumentation technique
that can be used to trace and analyze
scientific applications using high level I/O libraries like PnetCDF, HDF5, or MPI
I/O over file systems like PVFS2 and Linux. The tracing utility uses existing
MPI I/O function calls and therefore adds minimum overhead to the application
execution. It takes target high level metrics like I/O latency, I/O throughput and
I/O power as well as a description of the target I/O stack as input and analyzes
the collected information to generate output in terms of different user-specified
metrics. As our future work, we plan to extend our analysis to other available
I/O benchmarks, such as S3D-IO [22] and GCRM [21], to characterize their I/O
behavior. We also plan to investigate techniques for dynamic code instrumenta-
tion that makes use of information available at run-time to generate/restructure
code for data optimization.
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